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Abstract 

The structural properties of a pentagonal quasi- 
periodic tiling obtained by new deflation and match- 
ing rules are described. Two new types of vertices 
occur that cannot be found in generalized Penrose 
patterns. Tile and vertex frequencies as well as 
average edge valencies of vertices are enumerated. 
The geometry underlying the acceptance domain 
involves self-similar fractals. Two methods of con- 
structing the fractally shaped acceptance domain 
have been found. 

I. Introduction 

Considerable progress has been made on quasi- 
periodic structures during the last few years. Most of 
the work was focused on original (Penrose, 1974, 
1979; Gardner, 1977; de Bruijn, 1981; Mackay, 1982; 
Levine & Steinhardt, 1986; Socolar & Steinhardt, 
1986; Henley, 1986; Jarir, 1986; Kumar, Sahoo & 
Athithan, 1986; Socolar, 1989) and generalized Pen- 
rose tilings (Duneau & Katz, 1985; Pavlovitch & 
K16man, 1987; Ishihara & Yamamoto, 1988; Whit- 
taker & Whittaker, 1988; Zobetz & Preisinger, 1990). 
This is not surprising since there exists a large number 
of tools with which to analyze them: matching and 
deflation rules (Penrose, 1974; Gardner, 1977; de 
Bruijn, 1981; Levine & Steinhardt, 1986; Socolar & 
Steinhardt, 1986; Socolar, 1989), grid construction 
methods (de Bruijn, 1981; G~ihler & Rhyner, 1986; 
Levine & Steinhardt, 1986; Socolar & Steinhardt, 
1986; Korepin, G~ihler & Rhyner, 1988; Socolar, 
1989) and strip-projection methods (de Bruijn, 1981; 
Kramer, 1982; Kramer & Neri, 1984; Duneau & Katz, 
1985; Elser, 1986; Ostlund & Wright, 1986; Jarir, 
1986; Kramer & Zeidler, 1989; Socolar, 1989). 

Although one has to keep in mind that for any 
given orientational symmetry it is possible to con- 
struct an infinite number of quasiperiodic tilings that 
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can be grouped into LI* classes (Levine & Steinhardt, 
1986; Socolar & Steinhardt, 1986; Socolar, 1989), 
comparatively little attention has been paid to other 
pentagonal tilings (Gfihler & Rhyner, 1986; Socolar 
& Steinhardt, 1986; Olami & K16man, 1989) than 
original and generalized Penrose tilings. There is no 
reason to exclude a priori other tilings. Up to now 
we have no reason to suggest that properties of 
original Penrose tilings, such as matching rules, which 
force nonperiodicity, have direct physical sig- 
nificance, in the sense that the growth probability at 
a given site depends only on its local neighbourhood, 
since only growth algorithms with short-range inter- 
actions are of physical interest (Levitov, 1988; Onada, 
Steinhardt, DiVincenzo & Socolar, 1988, 1989; Jari6 
& Ronchetti, 1989; Socolar, 1990; Olami, 1991; 
Ingersent & Steinhardt, 1991). However, there are 
few proven results in this relatively new field of 
investigation. Hence, one is led to the conclusion that 
this key problem is by no means completely settled. 
Socolar (1989, p. 10548) stated: "It is worth emphasiz- 
ing again that the PLI t  class tilings discussed in this 
paper, though they play a special role in the analysis 
of the symmetries of interest here, are not necessarily 
privileged candidates for modeling physical struc- 
tures. It is possible that a different LI class would be 
required for the description of a given physical 
material.' Therefore tilings that have the same orienta- 
tional symmetry and tile shapes as Penrose tilings, 
but clearly have very different local and global 
configurations of tiles, may also be of interest and 
relevance to the study of quasicrystalline materials. 
Baake, Schlottmann & Jarvis (1991) introduced the 
new equivalence concept of mutual local derivability. 
They prove that under special conditions a tiling can 

* Two tilings are locally isomorphic and belong to the same local 
isomorphism (LI) class if any finite region that occurs in one also 
occurs in the other. 

t PLI denotes the LI class of the original Penrose tilings. 

© 1992 International Union of Crystallography 
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always be seen as a decoration of another suitable 
tiling (e.g. suitable decoration of the original Penrose 
tiling yields the kite-and-dart pattern and vice versa). 
Though these tilings do not belong to the same LI 
class, since they have different sets of tile shapes and 
different local and global configurations, they belong 
to the same 'equivalence' class. Therefore, this con- 
cept seems to be a further step to an exhaustive 
classification of quasicrystals. 

By means of simple deflation rules, two new kinds 
of pentagonal quasiperiodic tilings with new and 
interesting properties have been found. Deflation pro- 
cedures allow a fast, direct and unique generation of 
nonperiodic structures. A deflation rule is a self- 
similarity transformation in which each tile of the 
pattern can be subdivided into tiles scaled by a con- 
stant factor ~-~ to form a new pattern. A 'simple 
deflation rule' (Socolar, 1989) means that every tile 
of a given shape is subdivided in the same way. In 
the case described in this paper, /z = 7 2, where ~" = 
(x/5+ 1)/2. The deflation rules have been chosen such 
that corners of rhombi meeting at a vertex have 
interior angles of either zr/5 and 3~r/5 or 2~r/5 and 
4~r/5, respectively. As a consequence, the acceptance 
domains (ADs) consist of only three two-dimensional 
planes, whereas ADs of original and generalized Pen- 
rose tilings consist of four and five planes, respec- 
tively. Both new tilings have only pentagonal average 
symmetry, but the tiling that will be discussed in detail 
in this paper also has finite regions of tenfold sym- 
metry. The other tiling will be discussed in a forthcom- 
ing paper. The most remarkable property of both 
tilings is the fractal shape of their ADs. 

2. Match ing  and deflation rules 

The tiling described in this paper consists of two kinds 
of rhombi (Fig. l a )  - a large one, RL, with acute 
angle 2zr/5 and a small one, RS, with acute angle 
rr/5. The edge length of both rhombi is a. Two edges 
of each rhombus are labelled by a + sign, the remain- 
ing two by a - sign. Comers  where two edges with 
a + sign converge are assigned a + sign. The opposite 
comer has a - sign. The labelling of the edges com- 
pletely determines the labelling of the vertices and 
vice versa. Comers at a pole have interior angles of 
zr/5 and 3~'/5; the unmarked corners have interior 
angles of 2~-/5 and 4~ /5 .  The matching condition 
for these marked tiles is that edges and corners with 
a + sign must fit against edges and corners with a 
- sign. This matching rule is not a forcing rule, since 
one is able to tile the plane in a periodic way by 
means of the two rhombi. Therefore the two rhombi 
do not define an aperiodic set in the sense given by 
Griinbaum & Shepard (1987). 

Fig. l (b)  shows how deflation can be applied to 
large and small rhombi. The deflation types RL~ and 

RL2 and RS1 and RS2, respectively, do not differ in 
the geometrical arrangement of their parts after one 
stage of deflation, but do differ after two stages. The 
deflated tiles can be combined to give two different 
types of tiling: (1) RLI and RS~; (2) R L  2 and RS2. 
The tiling of type 2 will be discussed in this paper. 

By repeating the deflation process several times we 
obtain arbitrarily large patches of tiles, which implies 
that the whole plane can be tiled. Fig. 2 shows a patch 
of the tiling of type 2. 

RL RL 1 RL 2 

. + + + 

RS RS 1 RS2 
_ m m m 

(a) (b) 

Fig. 1. Large (RL)  and small (RS)  rhombi. (a) + and - signs 
represent the matching rules. Edges and corners with a + sign 
must fit against edges and corners with a - sign. The comer 
angles are indicated in units of ~r/5. (b) Deflation of the rhombi 
with a scale factor/.t = r E. RL 2 and RS 2 yield the tiling discussed 
in this paper. 

Fig. 2. A patch of the tiling by the rhombi RL 2 and RS2. The 
initial stage was an ST vertex. The figure shows the innermost 
part of the tiling that has been obtained by repeating the deflation 
process three times. Five steps of  deflating an L1 or L2 vertex 
or four steps of deflating an N or P vertex would have yielded 
the same result. 
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3. Vertex  frequencies  

The tiling of  type 2 has seven kinds of vertex, which 
are denoted by Q, K, L, S, N, P and ST (Fig. 3). Q, 
K, S, L and ST vertices may also be found in general- 
ized Penrose patterns (Zobetz & Preisinger, 1990). N 
and P are new vertices. A dist inction may be made 
between two kinds of L vertices, namely  L1 and L2, 
since their t ransformat ion by deflation is different. 
For L1 vertices the small  rhombus  has its negative 
end at the vertex, for L2 vertices it is the positive end. 
The deflation of an L1 vertex, which becomes an N 
vertex in the deflated tiling, and the deflation of an 
L2 vertex, which becomes a P vertex, is shown in 
Fig. 4. Two edges of the L2 vertex generate Q vertices, 
the remaining two generate K vertices. All four edges 
of  the L1 vertex generate K vertices. The surrounding 
three large rhombi  generate six Q, six L1 and three 
L2 vertices, the small  rhombus  one L1 and one L2 
vertex. Since the vertex valency of an edge and a 
rhombus  is 2 and 4, respectively, the number  of new 
vertices generated on an edge must be mul t ipl ied by 
1/2, that in a rhombus  by 1/4. 

Let (N 0)~, (NK)~, (Ns)~, . . .  denote the number  
of  Q, K, S , . . .  vertices, where n represents the stage 

Fig. 3. Types of vertices and Voronoi polygons occurring in the 
tilings described in this paper. D, Q, K, L, S and ST vertices 
may also be found in original and generalized Penrose tilings. 

+ L 2  - 

_ - + + 

÷ 

Fig. 4. Deflation of an L1 and an L2 vertex. L1 becomes an N 
vertex, L2 a P vertex after one stage of deflation. Two edges of 
the L1 vertex generate Q vertices, the remaining two edges K 
vertices. All the four edges of the L2 vertex generate K vertices. 
The adjacent three RL generate six Q, six L1 and three L2. 
vertices, RS generates one L1 and one L2 vertex. 

Table 1. Vertex frequencies of the tilings PT, and DT, 
corresponding to the fractal growth of the pentagonal 

and decagonal AD 

The subscript n denotes the stage of  fractal development.  FT 
denotes the tiling with the fractal shaped AD. The last row gives 
the average edge valency of  vertices. The vertex frequencies of  PT 
tilings converge to the values o f  FT. The vertex frequencies of  DT 
tilings remain constant  th roughout  the fractal development  after 
the second stage. 

Vertex 
D 
Q 
K 
L 

LI 
L2 
S 
N 
O 
P 

ST 
Average 

edge 
valency 

PTo PTI PT2 PT3 DTo DT1 DT2 FT 

0.1230 0.0157 0.0023 0.0003 - - 
0.3220 0.3017 0.2932 0.2920 0.3416 0.2918 0.2918 0.2918 
0.1230 0.1610 0.1776 0.1799 0.0807 0.1803 0.1803 0.1803 
0.2985 0.3743 0.3809 0.3818 0.3974 0.3820 0.3820 0.3820 

. . . .  0.2361 

. . . .  0.1459 
0.0890 0.0877 0.0817 0.0808 0.1305 0.0807 0.0807 0.0807 
0.0179 0.254 0.0323 0.341 - 0.0290 0.0344 0.0344 

- - - 0.0190 - - 
0.0166 0.0254 0.0236 0.0216 0.0059 0.0322 0.0213 0.0213 
0.0099 0.0087 0.0085 0.0094 0.0249 0.0041 0.0095 0.0095 

3.8060 3.9752 3.9964 3.9995 4.0000 4.0000 4.0000 4.0000 

of  deflation. The substitution of vertices upon defla- 
tion can be expressed by means  of a matrix M (Man- 
delbrot, Gefen,  Aharony & Peyri~re, 1985; Levine & 
Steinhardt,  1986; Kumar ,  Sahoo & Athi than,  1986; 
Olami & Kl6man,  1989): 

(No) , ,* l  

(NK) .+ I  

(NLI),,+I 

(NL2),,+I 

(Ns),,÷~ 
(NN),,+I 

(Np),,+I 

_(NST) ,, + t. 

3 

1 5 

1 

1 

~ 2 1 ~  
7 7 

1 1 1 

1 1 

1 

1 

~ 4 ~ 5- 

1 1 1 

-( N 0),," 
(NK)n 
(NLI)n 
(NL2) n 
(Ns),, 
(NN)n 

( Np)n 

_( NST),,. 

The characteristic polynomial  is 

det (M - h l )  = 3. 8 - 7.75h7 + 5.125h6 + 6.75h 5 

+ 1.5Aa-0.375A 3 . 

The following eigenvalues have been calculated: 

A ! ~ T 4, A 2 = 1.5998, A 3 = T -4 ,  

h4 = -0.4249 + 0.3559i, 

A5 = - 0 . 4 2 4 9 -  0.3559i, A 6 - -  A7 = As = 0. 

The vertex frequencies for the infinite tiling (n = oo) 
are given by the components  x of the eigenvector x 
of  the maximal  eigenvalue (Mandelbrot ,  Gefen,  
Aharony & Peyri6re, 1985; Olami & K16man, 1989) 
(Table 1). Solution of ( M -  h l l )x  = 0 yields 

x =  { t r [10-  6z, 1 0 z - 6 ,  T -a, 7 -4, ( 4 z - 6 ) / ( 3 z +  1), 

-7, -8, 1/(z7+ 9)]} 

where o- is real. 
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4. Determination of the acceptance domain 

The projection formalism is the most powerful 
method to compute the diffraction patterns of quasi- 
crystals by means of the Fourier transform of the AD 
(Levine & Steinhardt, 1984; Duneau & Katz, 1985; 
Elser 1986; Jari6, 1986). It will be briefly discused 
here. Consider a regular periodic hyperlattice in n- 
dimensional space with an m-dimensional (m < n) 
hypersurface embedded in it. Project all points that 
lie within a certain distance, w, from the hypersurface 
(the window function) onto a subspace R 'n (V~: 
external, parallel or physical space). The correspond- 
ing AD is the set of all projections on R n-m (V~: 
internal, perpendicular or pseudo space) of the lattice 
points that project onto R m. n = 5 for pentagonal 
quasicrystals of dimension m = 2. The explicit coor- 
dinates of a lattice point k in R 5 with coordinates k0, 
k l ,  k2, k3, k4 projected onto VE and V~ are 

kE = (~)'/2(~ kj c°s 2rrj/ 5, ~" kj sin 27rj/ 5 

and 

kl = (2)1/2(~ kj cos 47rj/ 5, Y.s kj sin 4rrj/ 5, Y.s ks/x~2), 

respectively. All the projected lattice points in VI are 
on planes perpendicular to the third axis, with separ- 
ation l/v/5. The AD of original Penrose tilings con- 
sists of four planes, those of general Penrose tilings 

of five planes. In our case it consists of three planes, 
since Y.j kj takes only three values, say, -1 ,  0 and + 1. 
In the case of quasicrystals, the AD is densely and 
uniformly filled by projected points kt (de Bruijn, 
1981; Elser, 1986), which implies that the frequencies 
of different types of vertices are proportional to the 
corresponding disjoint areas in VI. This method can 
be used to calculate the occurrence of the different 
vertices in tilings that cannot be constructed by means 
of deflation procedures. 

A numerical approach was used to determine the 
shape of the AD. The projected lattice points kl in 
VI of about 50 000 vertices kE, generated in VE by 
means of the deflation procedure, have been com- 
puted. The three planes of the AD, two of which, 
namely those corresponding to ~j  kj = -1  and Y.j k~ = 
0, are depicted in Fig. 5, show fivefold symmetry and 
are neither simple nor convex polygons. The underly- 
ing geometry is obviously not made of straight lines. 
The deflation process implies self-similarity relations 
on the shape of the AD and the disjoint areas corres- 
ponding to different types of vertices. For example, 
all L1 vertices become N vertices, and all N vertices 
become ST vertices after each stage of deflation, 
which implies that the area occupied by L1 vertices 
projected onto V~ is of the same shape as the area 
occupied by N vertices, except for the scale factor 
l /p.  and a rotation of 180 °. Comparable self-similar 
relations exist for the other types of vertices. There- 
fore, the AD was suspected to involve self-similar 

t 

% 

Fig. 5. The first four stages of the fractal growth of the AD. First row: ~j  kj = - 1  plane, pentagonal initiator. Second row: ~j  k j - - -1  
plane, decagonal initiator. Third row: ~ j  kj = 0 plane, pentagonal initiator. Fourth row: Y.j kj = 0 plane, decagonal initiator. The two 
figures on a larger scale show approximations of the fractal-shaped AD and the division into subregions corresponding to the different 
types of vertices. 
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fractals, since the underlying geometry is obviously 
not made of straight lines and is self-similar, but I 
have found no definite proof beyond these heuristic 
arguments. 

5. Fractal development of the acceptance domain 

Before we proceed with details concerning the con- 
struction of the fractal AD, let us focus on the con- 
struction of exact fractals. Many fractals - or at least 
their finite approximations - can also be thought of 
as seqences of primitive elements, for instance line 
segments. They are graphical objects defined in terms 
of rewriting rules, which usually can be carried out 
recursively. Mandelbrot (1983) restates the construc- 
tion of the classic and well known von Koch curve 
(von Koch, 1905): 'One begins with two shapes, an 
initiator and a generator. The latter is an oriented 
broken line made up of N equal sides of length r. 
Thus each stage of the construction begins with a 
broken line and involves replacing each straight inter- 
val with a copy of the generator, reduced and dis- 
placed so as to have to have the same end points as 
those of the interval being replaced.' 

Two methods of constructing the AD in the plane 
~r k~ = 0 have been found. The initiator of the first 
method is a regular pentagon (Fig. 5), each side of 
length 2(2) ~/2 being divided into two line segments of 
equal length. The generator is such that it consists of 
N = 3 equal intervals with length r = r-2(~) ~/2 and the 
angles between the first and second legs and the 
second and third legs are 108 and 144 °, respectively. 
If the generator is oriented such that the first and 
second line segments come to lie inside the actual 
initiator, the initiating line segment is called It, other- 
wise @. The subscripts denote the decagonal direc- 
tions 

er = [COS ( rrj/ 5), sin ( rrj/ 5) ], j = 0 , . . . , 9  

and it is understood that the subscripts are taken 
modulo 10. Associated with each O r and I t is a substi- 
tution rule: 

Or(j= 2n)-~ Oj+9, Oj+,, Ij; 

Oj( j= 2n+ l)-> Ij+s, Oj+4, Oj+6; 
/j(j  = 2n)--* Ij+l, Ij+9, Oj; 

/ j(j  = 2n + 1) ~ O~+s, I~+6,/~+,- 

The initiating regular pentagon is defined by the 
sequence Oo, Os, 02, 07, 04, 09, 06, Or, 08, 03. 
The third row in Fig. 5 shows the first four stages of 
the development of the AD in the plane Y'u kr = 0, 
when starting with a regular pentagon. 

The initiator of the second construction method is 
a regular decagon with side length = (~)~/2. Now, the 
generator is such that the angles between the first and 
second and the second and third legs are both 144 ° . 

I t and O r have the same meaning as above,  but we 
need new substitution rules: 

Oj--~ Oj+9, lj, Oj+l ; 

Ij --~ I j+  1, O j , / j +  9 . 

The starting sequence of the regular decagon is I0, 
O1, I2, 03, I4, 05, 16, 07, 18, 09. The first four stages 
of the fractal growth of the AD in the plane Yu kr = 0, 
when starting with a regular decagon, are shown in 
the fourth row of Fig. 5. 

The development of the AD in the plane ~t kr = -1  
corresponding to both construction methods is shown 
in the first and second rows of Fig. 5. The last column 
in Fig. 5 shows approximations of the fractal shapes 
and the division into subregions corresponding to the 
different types of vertex on a larger scale. Since the 
AD in the plane Y'u kt = 1 is only the mirror image of 
that with Yu kj = - 1 ,  it is not shown in Fig. 5. 

The fractal dimension D (Madelbrot, 1983) of an 
exact fractal curve is defined by the equation D =  
(log N)/log[(~)~/2/r]. Since for both construction 
methods N = 3  and r=r-2(~) ~/2, we get D =  
(log 3)/(log r 2) = 1.1415. 

Evidence for the equivalence of the two fractal ADs 
is given in the Appendix. 

6. Tilings corresponding to the fractal growth of the 
acceptance domain 

Tilings corresponding to different stages of the fractal 
growth of the pentagonal and decagonal AD will be 
denoted PT, and DT,,  respectively, where n rep- 
resents the stage of fractal development. The tilings 
have been obtained in the following way. An edge 
between two vertices in V~ appears only when both 
corresponding points in VE fall simultaneously onto 
the AD. So, starting from any point of the AD, one 
has to see whether the projection on V~ of an adjacent 
vertex falls inside the AD. This method to obtain a 
tiling is relatively simple when the number of line 
segments surrounding the AD is small, but is 
obviously a tedious and time-consuming task for til- 
ings with complex ADs, as is the case for PTs and 
DTs after a particular stage of fractal development. 
In the case of PTo (Fig. 6), the starting point was 
chosen in the centre of the AD in the plane ~r kr = 0, 
so that the tiling shows global fivefold symmetry. The 
AD of PTo in the planes Yu kj = - 1  and ~r kj =0  is 
shown on the left of Fig. 5 in the first and third row, 
respectively. The PTs consist of the two Penrose 
rhombi, an irregular octagon and a regular decagon. 
Two new types of vertices, N and P, occur (Fig. 3), 
which cannot be found in generalized Penrose filings. 
The frequency of the different types of vertex for the 
first four stages calculated following the method 
described in § 4 is given in Table 1. 
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During the fractal growth of the AD, the frequency 
of the D vertices, as well as that of the octagons and 
decagons, decreases and converges to 0. In PTo the 
edge valency (e.v.) of the vertices (the average number 
of edges meeting at a vertex) is e.v. = 3.8060 (Table 
1), which is significantly less than 4. This is due to 
the relatively large number of octagons and decagons. 
The edge valency is 4 if the plane tiling is entirely 
made of rhombi and is metrically balanced (Griin- 
baum & Shepard, 1987). As the fractal character of 
the AD grows, the average edge valency of the vertices 
increases and converges to 4 (Table 1). 

Fig. 6. A patch of PTo (initiating stage of the fractal growth of the 
pentagonal AD). Four different tiles occur in this pattern: the 
two Penrose rhombi RL and RS, an irregular octagon and a 
regular decagon. 

x~ 

Fig. 7. A patch of  DTo (initiating stage of the fractal growth of  
the decagonal AD). 

In the case of DT0 (Fig. 7), the starting point was 
not chosen in the centre of the AD in the plane 
Y~j kj = 0, but very near to it, since there exist no regular 
tilings (de Bruijn, 1981) with global fivefold or even 
mirror symmetry.* The AD of DTo in the planes 
Y.j kj = -1  and ~ kj = 0 is shown on the left of Fig. 5 
in the second and fourth row, respectively. This tiling 
is a slight but distinctive modification of the tiling 
described by Olami & K16man (1989). The shapes of 
their AD are a pentagonal star, which is identical to 
the AD in the plane Y'.j kj = -1 ,  a large decagon (iden- 
tical to the AD in the plane ~j  kj = 0) and a small 
decagon in the plane ~j  kj = + 1. The small decagon 
may be obtained by omitting the areas corresponding 
to the Q and K vertices. Olami & Kl6man (1989) 
derived their AD using a Voronoi construction in VI 
to maximize the packing fraction in VE (Olami & 
Alexander, 1988). In the tiling with the complete AD 
there occur seven types of vertex, Q, K, L, $, N, O 
and ST (Fig. 3). The frequency of occurrence of the 
different types of vertex and the edge valency of the 
vertices for the first three stages of fractal develop- 
ment are listed in Table 1. The vertex frequencies 
have been calculated as described in § 4. It is an 
interesting feature of these tilings that, after the 
second stage of fractal growth, the vertex frequencies 
representing the first coordination sphere remain con- 
stant and it seems plausible that, depending on the 
fractal stage, this will be also true for higher coordina- 
tion spheres. 

The fractal growth of the AD, whose limit is the 
fractal AD, is characterized by decreasing-size 
approximations. Increasingly small peninsulas and 
bays are added to and squeezed in the AD ad 
infinitum. The decreasing-size approximations can 
also be seen in the corresponding tilings. If one erases 
all Q, K and L vertices of a DT,,+I tiling, one obtains 
a DT,, tiling with larger rhombi, scaled by a factor 
r:. The area of the S, N, P and ST vertices of DTn÷i 
in V~ has the same shape as the AD of the DTn tiling, 
reduced by a factor r -2. If one starts from the same 
generic point, the intersection AD,,~ hAD,,2 of two 
different ADs yields the acceptance domain AD,,12 
of a tiling, whose vertices can be found in both DT~ 
and DT,,2. The ratio of the area of AD,12 to AD,~ 
may serve as a measure of agreement between the 
two tilings (Table 2). 

Since Y.j kj takes only the values -1 ,  0 and +1, it 
can easily be seen that rhombi can only be decom- 
posed in the way depicted in Fig. 1. Inversion 
of inflated RS does not change the position of 
any vertex, but inversion of inflated RL changes the 

* If one starts for instance with an ST vertex in the centre of the 
AD, then the process of projection does not lead to an unambiguous 
tiling, since there will be points kl that will fall on the boundary 
of adjacent vertices. Here, we exclude any consideration of singular 
tilings. 
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Table  2. The agreement between two tilings AD,1 and 
AD,2 

The ratio of the area of intersection of two ADs to the area Y.i A~, 
which remains constant throughout the fractal growth, serves as a 
measure of agreement between two different tilings. Y., A,,~2 ~ is the 
area of the intersection AD, ~ ~ AD,,2 of two ditterent ADs. n 1 and 
n2 (n2> nl) denote different stages of fractal development. The 
fraction of coinciding vertices, FCV, is given by ~ A,,t2i/~. i Ai, 
with ~, Anl2i =~i A~ -3"1+1(3 - r)(sin ~/5)/'r #hI+2, and ~, A~ = 
(2r+4) sin (2w/5). Since ~i kj takes only the values -1, 0 and +1, 
inflated rhombi can only be decomposed as shown in Fig. 1. 
Inversion of inflated RL changes the position of three vertices. 
The fraction of inflated RL, FIIRL, that has to be inverted to 
obtain complete coincidence is given by (1- FCV)(87r +5)/3. 

nl FCV (%) FIIRL (%) 
0 86.4745 50.0000 
1 94.0800 21.8847 
2 97.4088 9.5788 
3 98.8659 4.1926 
4 99.5036 1.8351 
5 99.7827 0.8032 
6 99.9049 0.3516 
7 99.9584 0.1539 
8 99.9818 0.0673 
9 99.9920 0.0295 

10 99.9965 0.0129 
15 99.999944 0.000207 
20 99.99999910 0.00000333 

pos i t i on  o f  three  vertices.  There fore ,  the f rac t ion  of  
inf la ted RL tha t  has to be inver ted  to y ie ld  a t i l ing 
o f  any  o f  the subsequen t  stages may  also serve as a 
measure  o f  ag reemen t  be tween  two filings (Table  2). 

7. A quasiperiodic tiling by fractal tiles 

The  fractal  shapes  of  the subreg ions  of  the A D  corres- 
p o n d i n g  to the different  types of  vertices can be used 
to tile the p l ane  in a n o n p e r i o d i c  way. One  example  
is shown  in Fig. 8. The  def la t ion  of  the three  fractal  
tiles c o r r e s p o n d i n g  to the vert ices ST, P (Q, L2), and  
N (L1) is s h o w n  in Fig. 8(b).  The  fo l lowing  subst i tu-  
t ion  mat r ix  may  be es tab l i shed:  

(gp),+, = 3 4 (NP), l ,  
( N N ) , + ,  1 3 ( N N ) , J  

where  (NsT), (Np) and  (NN)  deno te  the n u m b e r  o f  
ST, P and  N tiles, respect ively.  The  subscr ipts  deno te  
the  stage o f  def la t ion.  The  e igenvec tor  o f  the max ima l  
e igenva lue  A1 = r 4 yields  

(NsT)oo: (Np)oo: (NN)~o = 5-- 3 r : 7 - - 4 r  :7~'-- 11. 

The  e igenvec tor  o f  the max ima l  e igenva lue  o f  the 
t r an sposed  mat r ix  yields  the  ra t io  o f  the areas of  the 
three  tiles 

(AsT)oO : (Ap)oo : (As)oo = 2 r -  1:1 : r. 

Fig. 8 (a )  shows an ST tile af ter  two steps o f  def la t ion.  
The  fractal  shape  of  the tiles does  not  force n o n p e r i o -  

dici ty  as can  be seen in Fig. 9, where  a pa tch  o f  a 
per iod ic  t i l ing by N and  P tiles is shown.  

8. Concluding remarks 

There  is a seemingly  un l imi t ed  var ie ty  of  quasi-  
pe r iod ic  t i l ings be long ing  to different  LI classes, 
which  may  be genera ted  by choos ing  new def la t ion  
a n d / o r  ma tch ing  rules, genera l ized  grid me thods  and  
w indow func t ions  or ADs,  which  are the sets o f  
pro jec ted  poin ts  in VI of  the n -d imens iona l  lat t ice 

(a) 

ST P N 
(b) 

Fig. 8. Quasiperiodic pentagonal fractal tiling. The fractal tiles 
correspond to the regions marked ST, P and N in Fig. 5. (a) 
An ST tile after two stages of deflation. (b) Deflation of the 
fractal tiles ST, P and N. 

Fig. 9. A patch of a periodic tiling by fractal N and P tiles. 
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points defined by the window function. Derivat ion 
of the Fourier  t ransforms of  fractal ADs, even of 
finite approximat ions ,  will be a tedious task and the 
calculat ion of  numerica l  values will be t ime consum- 
ing. Moreover,  there exists an unl imi ted number  of  
quasiper iodic  tilings, generated by deflation rules 
with a scale factor/z  = z 2~ (some of these with tz = z 2 
and /x  = z 4 will be described in a for thcoming paper),  
whose fractal ADs also consist of  three planes and 
look very similar,  at least at first glance, but have very 
different local and global configurations. This again 
raises the quest ion of to what  extent it is possible to 
determine the real structure of a quasicrystal ,  
a l though very promising results in the structure 
determinat ion have been obtained (e.g. Steurer & 
Kuo, 1990; Steurer, 1991). However, one has to keep 
in mind that most structure determinat ions were 
carried out employing ad  hoc assumptions  about the 
window functions (Fibonacci  crystals: bars; 
octagonal quasicrystals" regular octagons; decagonal  
quasicrystals:  regular pentagons and decagons).  

The author  thanks one of  the referees for construc- 
tive comments  on the manuscr ip t  and for point ing 
out relevant references. 

A P P E N D I X  

Arguments  support ing the claim of equivalence of 
the fractal ADs generated by means  of the pentagonal  
and decagonal  AD construction methods are as 
follows. 

(1) Both ADs are fractal, have the same fractal 
d imens ion  and  consist of  only three planes (Y,j k j -  
- 1 ,  0, +1). 

(2) The area of  both ADs and the frequency of  
vertices converge to the same values. The area ~i  A~' = 
( 2 r + 4 )  sin (27r /5)=6 .8819 (A~ is the area of  the 
~ j  k i = i p lane of the AD and n denotes the stage of 
development)  of  the DTn ADs remains constant 
throughout  the fractal development .  The number  of 
added peninsulas  is the same as the number  of  bays 
that are squeezed in at every stage. Both penin- 
sula and bay have the same shape and area pn, 
where P,, = s i n  (27T/5) /57  "4n. The area of  the initi- 
ating pentagonal  AD is given by ~ i A  ° =  
3/ (s in  27r/5) + ( 4 z +  8)(sin 2zr /5) /5  = 5.9072, which 
is significantly less than 6.8819. The area of 30 
peninsulas  P~ is added at each stage. Each addi t ion 
of 30 increasingly small  peninsulas  increases the area 
of the AD, 

Y~AT=~ a ° + 6 ( s i n  2zr/5) ~ T -4j. 
i i j=! 

Hence, the value of  the area of  the fractal-shaped AD, 
co 

A T = Y . A ° + 6 ( s i n 2 z r / 5 )  ~, z -4j, 
i i j= l  

is easily seen to be just  the area of the decagonal  
fractal-shaped AD [~=~  z -4j converges to (z 4 - 1 )  -~ 
for n - - ~ ] .  Comparab le  equations exist for the dis- 
joint  areas corresponding to the different types of  
vertices and confirm that the vertex frequencies con- 
verge to the values derived by means  of the substitu- 
tion matrix M for the til ing of type 2 (Table 1). 

(3) Most convincing,  though not a justification, is 
the fractal development  of  both ADs shown in 
Fig. 5. 
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